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AL-Pyrrolines are found in nature as biosynthetic intermediates Scheme 1 . Lewis Acid-Mediated Synthesis of Al-nymliﬂeS
and as a part of pheromones, alkaloids, steroids, hemes, and LA = TMSCI
chlorophylls! In addition to having a wide range of biological /N—' R1%\ ICOQH
activities, Al-pyrrolines are important synthetic intermediates RS
because they have three contiguous stereogenic centers and one o _o 0.0
prochiral center as part of a cyclic imine, which is amenable to R f Lowis add R1:<\N:E> Zrimidazoline
further stereoselective synthetic manipulation with nucleophiles. Re o

imine

LA
A stereoselective and efficient preparation of a gen&tgbyrroline azlactone minchnone \__ LA = AgOAc j\,l,
template would provide rapid access to a range of biologically active PN COzH
natural products including the myosmines, amathaspiramides, and
kaitocephalin-type alkaloidsAlthough there have been several alkene A'-pyrroline
) . 1 i o
repor_ts for thg synthesis of simpl&!-pyrrolines, cycloadglltlon Table 1. Cycloaddition with Various Alkenes
reactions of muochnones and alkenes have not been fruitful as a
synthetic method to generate these compodidsfew examples o 1) AgOAc (10 mol %) R o
include the use of azomethine ylides or cyclopropanes to gain access Ph—<\Nf alkene Ph@;o Ve
to di- or trisubstituted Al-pyrrolines® However, the primary Ri' 2) TMSCHN, NR, z
cycloadducts that are formed in the cycloaddition reaction with azlactone - .
minchnones readily eliminate carbon dioxide, resulting in the R, alkene  %eYield __ Avpyrroline
formation of pyrroles, or isomerize to th&2-pyrroline, resulting alb 2 b
. g . Ph
in a loss of stereochemistPy.® A notable exception was reported Ph O N
by Padwa and co-workers who successfully isolated and character- ; . oN_o 78 i &0
ized the primary adducts from intramolecular cycloadditions of U P“@coznne
munchnones to terminal alken&sin addition, Turchi and co- Et0,G Me
workers described the isolation ofAd-pyrroline-5-carboxylic acid COEt
) e i Me EtOZC COzEt 75 Ph—(

from the intermolecular cycloaddition of 1,2-dicyanocyclobutene N—=COMe
to a minchnoné. Our recently reported trimethylsilyl chloride- Et0,G
mediated intermolecular 1,3-dipolar cycloaddition of an in situ ;. Eo,c CcOEt 15 Phh:coit

. .. . . - . \—/ N\ L=CcO,Me
generated rimchnone and imine yielded the primary imidazoline N
adduct containing a four-point diversity and two new stereogenic P
centers (Scheme 1).We report herein aexoselective synthesis E10,C FOR  cort "% coe
of highly substitutedxl-pyrrqline scaf'f_olds from amino acid-derived 4 Me = CoLEt 75(21) P“‘{,jfcozm Phﬂcozm
minchnones. After screening a variety of Lewis a¢idge found Me Me
that silver acetate successfully catalyzed the cycloaddition reaction MeO,G CO,Me
of azlactones with alkenes, generatifigtpyrrolines in very good 5 Me MeOC 95(1:1) Ph—<\/|_COZMe Ph \—=COMe
yields without isomerization to th&2-pyrrolines or decarboxylation N e Me

to the corresponding pyrrolég3

The cycloaddition reactions proceed well with electron-deficient
alkenes and 10 mol % silver acetate in THF at room temperature notable exception to this is the ligand-induceso selectivity
to provide the highly substituteti’-pyrrolines, often in good yields.  described by Komatst?.
Only theexoadducts of the\-pyrrolines were observed wittis- Acyclic azomethine ylides have been proposed to adoptra
olefins as determined by NOE experiments and X-ray crystal- orientation in the prescence of a Lewis acid, whereas thecmu
lography? in accordance with observations by other grotfps. nones are locked ianti orientation. This could be a possible basis
However trans-diethyl fumarate resulted in 2:1 ratio eko-/ende for obtaining opposite diastereoselectivity in the resulting product
diastereomers (entry 4, Table 1). Diethyl fumarate and diethyl for the same orientation of alkeA®.Electronic effects were
maleate provided both a 3tfansrelationship of the ethoxycarbonyl  suggested to play a dominant role in favoring e product in
groups. This is likely the result of the isomerization of the Gig- intermolecular cycloaddition reactio#%® Turchi and co-workers
substituted A'-pyrroline obtained from diethyl maleate to the have carried out extensive MO calculations to rationalize the
thermodynamically more stable 3t¢ans product through an stereochemical outconi¢ AM1 calculations for additions of 1,2-

intermediate enolate ion (Table 1, entry 2 versu324jhe exo dicyanocyclobutene to fmehnones indicated that the cycloaddition
preference is in contrast to ttendopreference observed in the is a concerted but nonsynchronous process. Semiempirical calcula-
synthesis of pyrrolidines from acyclic azomethine ylide%s A tions have not been successful in explaining the regiochemical and
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Table 2. Variation of Substituents at 2- and 5- Positions most likely proceeds via a common ring-opened ketene intermediate
Ph (Scheme 2). We were successful in selectively trapping the ketene
oﬁo intermediate with benzylamine to afford tlns amide in good
= o\/N'Ph yield (entry 12, Scheme 2). This selective ring-opening reaction
00 1) AgOAc (10 mol %) T o0 provides another opportunity to expand on the stereochemical
R~ f — R1—<100 Ve diversity of the scaffolds.
NTR, 2) TMSCHN, N 5{2 2 In conclusion, we have developed a diastereoselective and
efficient synthesis of highly substitutes-pyrroline-5-carboxylic
azlactone acid scaffolds via a silver(l)-catalyzed [3 2] cycloaddition
entry R, R, % yield reaction. Theexo selectivity complements thendoselective
6 Ph Ph 0 cycloaddition of related acyclic azomethine ylides very well.
7 Ph Bn 67 Diastereocontrol can be extended to the three stereogenic centers
g I\P/Ih '\:J;l-indolylmethyl 5790 by appropriate choice of substrates and isolation conditions.
e e
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Scheme 2 . Ring Opening and Isomerization of Cycloadducts
crystallography.
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